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While morphological traits are often associated with multiple functions, it
remains unclear how evolution balances the selective effects of different func-
tions. Birds’ beaks function not only in foraging but also in thermoregulating
and singing, among other behaviours. Studies of beak evolution abound, how-
ever,most focus on a single function. Hence,we quantified relative contributions
of different functions over an evolutionary timescale. We measured beak shape
using geometric morphometrics and compared this trait with foraging behav-
iour, climatic variables and song characteristics in a phylogenetic comparative
study of an Australasian radiation of songbirds (Meliphagidae). We found that
both climate and foraging behaviour were significantly correlated with the
beak shape and size. However, foraging ecology had a greater effect on shape,
and climate had a nearly equal effect on size. We also found that evolutionary
changes in beak morphology had significant consequences for vocal perform-
ance: species with elongate-shaped beaks sang at higher frequencies, while
species with large beaks sang at a slower pace. The evolution of the avian
beak exemplifies how morphological traits can be an evolutionary compromise
among functions, and suggests that specialization along any functional axismay
increase ecological divergence or reproductive isolation along others.
1. Introduction
The extent to which traits are optimized for different functions is a core question
in evolutionary biology. Many studies of adaptation have focused on a single
proposed function and measured its effect on trait evolution [1]. However,
morphological structures in nature are often associated with multiple functions
or behaviours [2]. It remains unclear how selection to optimize trait values for
each function should affect the overall structure and its components over evol-
utionary timescales, as selection fluctuates and varies across space during
diversification [3]. One possibility is that different components of a trait
should correlate with separate functions such that each selective optimum is
not mutually exclusive with others. Alternatively, constrained or inherently
mutually exclusive optima may produce traits that are a compromise between
functions [4,5]. Studies are needed that can compare the relative contributions
of different functions over evolutionary timescales to reveal how the effects of
these functions on morphological evolution are balanced.
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Bird beaks are an excellent example of a multifunctional
trait. Birds use their beaks for foraging, and selection on
beak morphology related to this function is a textbook
example of evolution [6,7]. However, birds also use their
beak for nest building [8], preening and parasite removal [9],
singing [10] and thermoregulating [11,12]. Both population-
level [13–15] and comparative studies [16–18] have identified
correlations between beak phenotypes and the functions
described earlier. While previous tests of these relationships
have provided important insights into the evolution of beak
morphology, they have mostly tested a single hypothesized
function (see [19,20]). Integrating these different functions in
a single-study system to identify how beaks are related
to their many functions is thus a means to improve our
understanding of how multifunctional traits should evolve.

That morphological structures in general, and beaks in
particular, often evolve in an integrated fashion imply that
evolutionary trade-offs should exist and that it should be dif-
ficult to arrive at each function’s univariate optimum
simultaneously [21,22]. However, it is worth considering
that species’ traits may be capable of evolving such that
their functions are split between elements of beak shape.
For example, it is conceivable that selection on foraging be-
haviour might drive the evolution of relative beak length or
depth (as in [6,19]), but that selection on thermoregulation
ability might independently drive the evolution of beak
size (as in [23]). Alternatively, functions may be shared
across elements of beak shape for two reasons. First, this
might be expected if morphological integration of the beak
may be so strong that it constrains the availability of pheno-
types that can satisfy specialization for multiple functions
[1,24,25]. Indeed, Bright et al. [22,26] found that integration
between the beak and skull explained more variation in
beak shape than diet. If morphology of the beak alone is simi-
larly integrated, it would evolve more like a single integrated
trait and a compromise among its many functions. Second,
even without developmental constraints, different functions
can select for optima that are mutually exclusive such that a
trade-off between the functions must arise (i.e. a jack of all
trades is a master of none [27–29]).

Aside from functions relating to ecological niche, beaks
often also function in visual and acoustic signalling. In song-
birds especially, beak size and shape are related to vocal
performance [10]. Several recent studies in woodcreepers (Fur-
nariidae) have found that song characteristics are influenced by
morphology at broad taxonomic scales [16], even when
accounting for the direct influence of the environment on
signal evolution [30]. Beak morphology may thus be a means
by which niche evolution indirectly influences divergence in
mating signals [31]. To better clarify the role that niche evol-
ution plays in divergence, studies are needed that can
connect changes in function to changes in morphology, and
changes in morphology to changes in animal signals. Here,
we use a comparative study of honeyeaters (Meliphagidae) to
test this framework.

Honeyeaters are a diverse radiation of songbirds (Passeri-
formes) that belong to a lineage sister to core oscine
lineages, and they have remained almost completely confined
to Australasia [32]. Having originated in a wet subtropical
environment [33], they now inhabit broad climatic and biotic
gradients in Australasia, from inland deserts to temperate
sclerophyll forests and tropical island rainforests. The hon-
eyeaters have historically been confined to a single
zoogeographical realm to the southeast of Wallace’s Line
[34,35], making them a convenient replicate of songbird evol-
ution for studying change within a single biogeographical
arena [36,37]. They vary widely in their diet, size and climate
preferences and aspects of their beak morphology have pre-
viously been associated with their diet [38] and with winter
temperatures (i.e. Allen’s rule [17,39,40]). In adapting to Aus-
tralia’s arid interior, they have evolved divergent
morphologies and behaviours [41].

We used a geometric morphometric approach to quantify
the beak shape and size in 101 species of honeyeaters. We
integrated this with foraging behaviour from [41], song
characteristics (frequency and pace) and climate to examine
the multivariate nature of beak shape and size optimization.
First, we examined whether there is a detectable relationship
between each function and beak morphology in honeyeaters
when controlling for other predictors. Second, we quantified
the extent to which axes of beak morphology are either
shared or split between different functions. Finally, we
tested the effect of niche evolution on vocal traits as mediated
by beak size and shape.
2. Material and methods
(a) Geometric morphometrics
We measured 525 specimens from the Natural History Museum
in Tring, UK, to describe variation in beak shape among 101
honeyeater species (see the electronic supplementary material,
appendix S1; mean 4.8 specimens per species). We photo-
graphed each specimen’s beak under standardized focal
distance and lighting conditions (Nikon D80 camera with
Nikon 105 mm Micro lens). Specimens were aligned relative to
the camera using an adjustable stage such that their midsagittal
plane was in line with the camera’s focal plane, and a measure-
ment standard was included in each photo. We chose a set of
four landmarks and 20 semi-landmarks that defined the outline
of the rostrum and nare (figure 1). All landmark measurements
were performed by N.R.F. We did not include information on
the outline of the mandible or the portion of the rostrum
posterior to the nares, as these features were often obscured
by the rostrum and head feathers. Future studies may address
this issue using either disarticulated skeletal material or
penetrative scanning methods (e.g. computed tomography).

We aligned these landmarks and semi-landmarks using a
generalized Procrustes analysis performed with the geomorph
package in R (v. 3.0.6; [42]). Procrustes distances were used as
the optimization criterion for semi-landmark alignment. Outliers
beyond the upper quartile of Procrustes distances from the mean
were re-measured to confirm they reflected real variation in
shape and not digitization errors. Following Procrustes align-
ment, we produced species averages using the mshape function
in geomorph. We extracted principal components (PCs) of beak
shape variation for use in subsequent analyses and visualized
their loadings using thin-plate spline warp grids (figure 1). We
estimated beak size from photographs by taking the centroid
size of the landmarks following Procrustes analysis, while
using a landmark measurement of the standard included in the
photo. This method is a common way to measure the shape-
free estimate of size and is commonly employed in geometric
morphometrics [43].

(b) Foraging behaviour
We used data collected as described in [41] to describe foraging
behaviour of honeyeater species. In brief, these data were col-
lected from 9595 field observations of foraging behaviour and
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dietary preferences for 74 species of honeyeaters in every
territory of Australia. We ordinated variables from these behav-
ioural observations using a phylogenetically corrected principal
component analysis in phytools (pPCA; [44]). The results of this
ordination are as described by Miller et al. [41]. The first pPC
axis described a continuum from species that glean insects
from leaves to species that rely on nectarivory and occasional
aerial attacks on flying insects. The other pPC axes described
the extent to which species foraged in the canopy versus on the
ground (as in Epthianura) and the extent to which they employed
comparatively rare, specialized behaviours such as foraging on
insect cases and using the beak to lever open rolled substrates
(gaping; see the electronic supplementary material, figure S1 for
pPC biplots).

(c) Song analysis
We measured 711 recordings available in public databases at the
Macaulay Library at the Cornell Laboratory of Ornithology, the
Naturalis Biodiversity Center and the Australian National
Wildlife Collection (see the electronic supplementary material,
appendix S2). Our song analysis protocol closely followed those
described in previous studies of song evolution [45,46]. We
treated each recording as a separate singing bout and measured
no more than one song type per individual to maximize the
independence of our samples. We excluded recordings that
were deemed of poor quality, particularly those in which
sounds in the background prevented the accurate measurement
or identification of the target species (identifications were made
using recordists’ notes and descriptions in the Handbook of the
Birds of the World [47]). For the purposes of this study, our
operational definition of a ‘song’ was any vocalization that
included tonal elements, was longer than 1 s in duration and
was preceded and followed by intervals greater than 1 s [45].
We included intervals greater than 1 s in songs only if they were
part of a consistently repeated pattern of note types (e.g. A… BC).

We generated spectrograms in RAVEN PRO v. 1.5 (Cornell Lab-
oratory of Ornithology 2014) using a window size of 256
samples. On each spectrogram, we recorded the start and end
time of the song and each note, as well as the maximum and
minimum frequency of each note (for at most 30 notes). From
these data, we calculated two metrics of song frequency: mean
note minimum frequency and mean note maximum frequency.
We also calculated an estimate of ‘song pace’ following [46],
which was the total number of notes in each song divided by
the song’s duration. These metrics were chosen among the
many that have been previously described [45,46] based on pre-
vious studies showing that they should be most influenced
by changes in beak morphology, as well as their general
applicability across a broad taxonomic range [10,48–50].

(d) Climate
To describe the thermoregulatory challenges faced by species in
different habitats, we estimated the average winter minimum
temperature and summer maximum temperature for each species
based on their breeding range. We used rasterized climate data
from the Bioclim dataset (1960–1990; bio5, bio6 [51]), averaging
across cells included in each species’ range using the R package
raster (v. 2.6-7 [52]). Range maps were provided by BirdLife Inter-
national and NatureServe [53]. Species average summer
maximum temperatures ranged from 20 to 38°C, and winter
minimum temperatures ranged from 3 to 22°C.

(e) Phylogeny
Marki et al. [54] inferred a time-calibrated phylogeny for the
infraorder Meliphagides using BEAST [55]. Their study was
based on a supermatrix assembled from four nuclear loci (two
introns and two exons) and five mitochondrial loci. We used
this phylogeny, pruned to include only species in our focal
group, for all analyses described below.

( f ) Comparative methods
We performed regression tests to address (i) the relationship
between foraging, climate and morphology and (ii) the relation-
ship between morphology and song. In the former set of tests,
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morphology is the response variable, and in the latter set, song is
the response variable. We corrected for similarity owing to
shared evolutionary history and included an effect of body size
[56] on beak size (either as covariate or body size residuals
when that was not possible) in each analysis.

We employed four sets of comparative analyses: (i) phylo-
genetic generalized least-squares regressions (PGLS [57]) were
used to test the relationship between a set of predictor variables
and a single response variable (a feature of either beak mor-
phology or song behaviour). We performed these tests using
an estimated lambda parameter to control for the amount of
phylogenetic effect in the model residuals [58]. We scaled vari-
ables by their standard deviations and centred them on zero to
produce standardized regression coefficients. Because song be-
haviour is often variable in passerine species, we repeated our
PGLS analyses involving song traits using a method that
accounted for this intraspecific variation [59].

However, relationships among climate, behaviour and
morphology may be complex [41,60]. Hence, (ii) we used a phy-
logenetically corrected path analysis to disentangle these
relationships and their effects on beak shape. This was accom-
plished using the R package phylopath (v. 1.0.1 [61]). We tested
between path models varying on two axes: first, function–trait
relationships were organized such that functions were either
split or shared between different axes of trait variation (figure 2a
versus b); second, relationships between functions (e.g. between
temperature and foraging ecology) either were or were not
included (figure 2a versus c). We controlled for the effect of
body size on beak size in the path analysis by including the
beak size residuals of their allometric regression. We evaluated
these models by comparing their C-statistic information criterion
(CICc), which describe model fit while taking into account the
number of parameters/paths [62].

Because shape is a highly dimensional trait, we also
employed several multivariate approaches. We performed
(iii) a phylogenetic Procrustes analysis of variance (ANOVA)
that treated Procrustes-aligned beak shape as a response variable
[63]. In this analysis, we included all PCs of foraging behaviour,
as well as both summer and winter temperatures, body size and
beak size as predictors. We performed this analysis using a
Brownian motion model in the geomorph function procD.pgls
and 5000 iterations of resampling for significance testing. Effect
sizes from this analysis are intended to describe the overall con-
tribution of each predictor variable in explaining beak shape
evolution in honeyeaters. Pseudo-R2 values were calculated
for the beak size as a comparison with beak shape, based on a
multivariate phylogenetic regression implemented in phylopath.

We also performed (iv) a two-block partial least-squares
analysis using a matrix of multivariate foraging behaviour
traits as a predictor and Procrustes-aligned beak shape as a
response variable. This analysis was intended to test for and
measure the degree of overall covariation between these highly
dimensional traits.
3. Results
The shape of honeyeater beaks varied among species primar-
ily in their depth and elongation, which was the first PC axis
and explained 86% of variation (figure 1; hereafter ‘depth’).
Along the PC1 axis, low values correspond to long and slen-
der beaks exemplified by spinebills (Acanthorhynchus),
whereas high values correspond to short stocky beaks exem-
plified by miners. Low values of PC2 correspond to straight
beaks as in Melithreptus species, whereas high values corre-
spond to highly curved morphologies like those seen in
myzomela (10% of variation; hereafter ‘curvature’). We also
observed variation in the degree of tapering towards the
distal end of the beak (PC3; 2%; hereafter ‘tapering’; elec-
tronic supplementary material, figure S2). More PC axes
were recovered, but none explained greater than 1% of
variation.

Phylogenetic regressions revealed many relationships
among beak morphology, foraging behaviour and climate.
In particular, beak depth (PC1) showed significant relation-
ships with foraging pPC1 such that species specializing on
nectar had elongated beaks (PGLS: p < 0.001; see the elec-
tronic supplementary material, table S2; figure 3) and with
winter temperatures such that the species inhabiting regions
with cold winter had less elongated beaks (PGLS: p < 0.01).
Beak curvature was similarly correlated with foraging pPCs
1 and 2 such that species foraging for nectar tended to have
curved beaks (PGLS: p < 0.05), and species foraging on
insect cases (bagworms, etc.) tended to have straight beaks
(PGLS: p < 0.001). Species with beaks that tapered at the
end tended to forage on or near the ground, whereas species
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with beaks that tapered throughout tended to forage in the
canopy (PGLS: p < 0.01). Because both foraging behaviour
and shape are multivariate traits, we also performed a
two-block partial least-squares analysis comparing their
relationship, which showed a strong correlation between
these two character sets (r = 0.625; p = 0.003).

To assess the extent to which the evolution of beak shape
was explained by diet, climate and body size predictors, we
used a phylogenetically corrected path analysis. In this analy-
sis, models with traits linked to multiple functions were a
better fit to the data (figure 2c,d ). In the best fitting model, cli-
mate and foraging ecology influenced both beak size and
beak shape (figure 2e). However, foraging ecology had a
greater effect on shape and a slightly greater effect on size.
Varying the type of body size correction used produced
few qualitative changes; winter temperatures had a margin-
ally stronger effect on beak size than foraging when size
correction was removed, and both winter temperatures and
foraging had marginally reduced effects on beak size when
body size was included as a covariate (electronic supplemen-
tary material, figure S3). Examination of the relative variances
explained for beak size and multivariate beak shape also
showed that, other than allometry, winter temperatures and
foraging ecology had the greatest effects on beak size, and
foraging ecology had the greatest effect on the beak shape
(figure 3). Both summer and winter temperatures had a sig-
nificant effect on overall beak shape, but the effect of
summer temperatures was greater in our Procrustes PGLS
analysis (figure 3). However, when including and correcting
for indirect effects (summer temperatures predicting nectariv-
ory), winter temperatures showed a greater effect on beak
morphology (electronic supplementary material, figure S4).
Curvilinear relationships with temperature were in some
cases a better fit to our data (electronic supplementary
material, table S3 and figure S5), as in [11]. In total, these
variables explained 51% of the variance for the beak size
and 43% for the beak shape.

We found significant relationships between two aspects of
beak morphology, size and depth and song characteristics in
honeyeaters (figure 4; electronic supplementary material,
figure S6). In particular, species with larger beaks sang at a
slower pace (PGLS: p < 0.001), and species with more
elongated beaks exhibited a lower maximum frequency
(PGLS: p < 0.01). Species with elongated beaks also sang at
a slower pace when correcting for body size instead of beak
size (electronic supplementary material, figure S7). Other
characteristics of beak shape, curvature and tapering,
showed no significant effects on song characteristics. As
expected, species with larger body sizes also exhibited
lower minimum frequencies.
4. Discussion
(a) Relationship with foraging ecology and climate
Our results indicate that the evolution of both beak size and
beak shape in honeyeaters was driven by a set of trade-offs
among allometry, thermoregulation and foraging ecology.
Diet and foraging ecology had a slightly greater effect on
beak size than winter temperatures in both types of analyses
performed. Previous studies have shown a relationship
between climate and beak size [39,64] and have identified
how the beak’s thermoregulatory function explains this vari-
ation [15,23]. However, previous studies have also identified
beak morphology as a subject of at times intense natural
selection in association with foraging ecology [6,65]. Our
findings suggest that selection based on both of these
functions is evident over evolutionary timescales.

Beak shape was correlated with both climate and foraging
ecology, but diet in particular explained the most variation in



song pace max frequency min frequency

−0.8 −0.4 0 0.4 0.8 −0.8 −0.4 0 0.4 0.8 −0.8 −0.4 0 0.4 0.8

beak size

curvature

depth

tapering

body size

effect size

***

**

**

(a)

beak morphology

size

curve

depth max frequency

pacenectarivory

summer heat

winter cold
(b)

songecology

***

***

******

**

Figure 4. (a) Forest plot of effect sizes (standardized β) and their 95% confidence intervals for the effect of beak morphology on three different song metrics, as
derived from multivariate PGLS analysis. Asterisks below bars represent significance values assessed through bivariate regressions including correction for intraspecific
variation in song characteristics. (b) Diagram of general conclusions. **p < 0.01; ***p < 0.001.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20192474

6

this trait overall (figure 3). This result echoes that of a recent
study in waterfowl, which showed that the beak shape was
strongly correlated with diet [18]. However, while Olsen
[18] found that diet explained 64% of variation along the
first PC axis of beak shape, we found that diet explained
only 23% of variation. This may suggest that major changes
in foraging ecology in honeyeaters do not necessitate changes
in the beak shape; the prevalence of nectarivory in most
species could make changes in the morphology of their
brush tongues as important as beaks for survival, if not
more so [66,67]. Similarly absent from this and most other
morphological analyses is consideration of musculature in
the avian head and its association with foraging ecology
[68]. Finally, as suggested by Miller et al. [41], mismatch
between morphology and function may be ameliorated by
changes not in form but in behaviour. Precise quantifications
of trophic interactions are difficult to assemble for large taxo-
nomic samples, which is a limitation for this and other
comparative studies. While we were able to include infor-
mation on flower length in our analysis, fine-scale data on
the size and the identity of prey items require data from
stomach contents in addition to behavioural observations [69].

Scaling with body size explained a significant amount of
variation in beak size, as expected [70], but this was not the
case for beak shape, whose relationship to body size is less
straightforward. Previous studies of beak shape in relation
to allometry have found significant relationships with far
greater explanatory power than we report [22,71]. Bright
et al. [22] reported that allometry explained more variation
in beak shape than diet in raptors. The relatively weak
effect of allometry on beak shape we observed in honeyeaters
may thus be exceptional. While in many lineages foraging
niche tends to change with the body size [72], these traits
appear to be relatively decoupled in honeyeaters. Indeed,
both the smallest and largest honeyeater species on the
Australian continent (Myzomela sanguinolenta and Anthochaera
carunculata) are observed to take nectar from bottle-brush
flowers, although they survive by different strategies [73].
(b) Evolution of a multifunctional trait
We compared the goodness of fit for models including
trait–function relationships that were either split (each axis
of variation mapped to one function) or shared (each axis
of variation mapped to multiple functions). Shared models
consistently performed better (figure 2), suggesting that the
evolution of beak morphology is shaped by multiple func-
tions, even when reduced to individual elements of the
beak shape. The reduction in species’ traits to a single func-
tion is a classic critique of the search for adaptive
optimality in organismal design [1]. Our analysis tests and
supports the notion that species’ traits can be a compromise
among many functions [74]. The beak’s origin as a modified
jaw [75] strongly suggests that the foraging function of the
beak predates thermoregulation, nest building, preening,
etc. However, once these other exaptive functions evolved
[76], changes in beak shape and size would have pleiotropic
consequences beyond foraging efficiency (as acknowledged
in [77]). This implies a one-to-many mapping of trait form
to function that should engender numerous trade-offs,
unless these are reduced by the mapping of many potential
trait optima to each function as in [78].

The size of honeyeater species’ beaks not only increased in
warmer climates but also increased with their reliance on
nectar foraging behaviour; beaks also become more elongate
under these conditions. This is likely to reflect a set of conflict-
ing selection pressures similar to that observed in studies of
granivorous song sparrows [19,79], wherein individuals with
short beaks exhibited lower over-winter survival as juveniles,
but greater reproductive success as adults. This should pro-
duce evolutionary trade-offs in some cases, especially for
honeyeaters that forage on nectar but must endure relatively
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cold winters. Other behaviours may also mitigate the costs of a
large beak in cold weather, such as the tendency of many bird
species to tuck their beak into their feathers [80,81]. Likewise,
honeyeaters are observed to perform a diverse range of fora-
ging behaviours that could mitigate the costs of adaptations
to extreme climates [41]. We propose that the inability to sim-
ultaneously maximize multiple functions of a single trait [79]
may lead to the evolution of novel behaviours either solving
or ameliorating the dilemma.

(c) Consequences for song evolution
Variation in both the beak size and beak shape had a signifi-
cant effect on song characteristics in honeyeaters (figure 4).
Larger honeyeater species sang at lower frequencies, reiterating
a relationship that is well established both within and among
species [49,82]. Species with longer and narrower beaks also
sang at lower maximum frequencies, and species with larger
beaks sang at a slower pace. Longer beaks have been observed
to attenuate high-frequency sounds produced by the syrinx in
laboratory experiments [83,84]. Likewise, a larger beak should
create performance constraints on the production of rapid
vocal tract movements [10,14]. This effect may be especially
pronounced in honeyeaters, where we observe that species
with large beaks tend to use them for nectarivory and hawking,
rather than for more mechanically demanding behaviours like
seed-crushing [13]. Assuming the beak to be a simple lever, this
motor performance relationship between the beak size and the
song characteristics should be mediated by limitations not only
in the beak’s mass and length but also in the muscles that move
it—their mass, length and insertion points [85]. Future studies
are needed that can compare variation in musculature and
beak morphology among species [68,86].

Habitat structure is often implicated as an influence on
vocal evolution in birds [87,88]. The absence of this variable
in our analysis is a limitation of this study, as it could poten-
tially have complex and confounding relationships with
foraging ecology and the Australian climate. However, recent
studies suggest that while direct selection on song phenotypes
based on habitat is likely to be important among speciating
populations [89,90], such effects can be weak or outweighed
by indirect trait relationships during diversification [30,82].

Previous studies uncovered the indirect link between fora-
ging ecology and song performance by examining species
known to or expected to vary in the beak size based on
their foraging ecology [10,14,16,91]. Our study adds to this
background by connecting beak function to beak mor-
phology to vocal evolution in a single phylogenetic
comparative framework. In doing so, we show how changes
in beak morphology associated with both foraging and ther-
moregulation can influence vocal evolution in songbirds,
although we cannot rule out a reverse effect wherein changes
in song drive changes in beak morphology. Divergence in
trait function can be expected to cause signal divergence
during speciation [31]. Also, environment–trait–signal
relationships like the one we report could potentially
encode information on functional trait genotype into signals,
which could form the basis of assortative mating [92].
5. Conclusion
Here, we assess the influence of foraging behaviour and cli-
mate on the evolution of beak morphology and find that
both are correlated with changes in beak size and shape.
Indeed, no axis of morphological variation that we examined
was associated with an isolated function. The at times con-
flicting effects of variation in this trait have been observed
in wild populations [19]; here, we show that they can also
be observed when comparing lineages in a broadly diversify-
ing continental radiation. Our findings add to those of
previous comparative studies [18,64] by showing that the
thermoregulatory and foraging functions they identified are
correlated with changes in beak morphology. Many traits
typically associated with foraging exhibit a degree of multi-
functionality similar to the avian beak, which produces a
one-to-many mapping of form to function [78]. For example,
the mandibles of worker ants are associated with a broad be-
havioural repertoire [93,94], as are the pedipalps of many
arachnids [95]. Such multifunctional traits may occasionally
appear highly specialized for a single task, but it seems
likely that this specialization comes at a cost for performance
of other tasks [5,27].

Our study confirms others that find relationships between
beak size and song evolution [10,14,16]. Our results show
that the elongation of the beak may also have implications
for vocal performance and further add to these previous
works by connecting foraging and thermoregulatory
functions to their signalling consequences. In particular, hon-
eyeaters evolving beak shapes that are associated with
nectarivory should be limited in the maximum frequency
that their songs can achieve. Similarly, species with small
beaks associated with winter cold tolerance should be
capable of producing faster songs. Divergent song character-
istics may contribute to the evolution of reproductive
isolating barriers [31] or potentially provide information to
receivers about the signaller’s functional phenotype [92].
We predict that signal characteristics associated with func-
tional phenotypes that convey a selective advantage should
thus be ideal targets for the evolution of female preferences
and assortative mating, as they may convey information
regarding a suitor’s fitness without respect to the condition.
Taken together, the evolution of the avian beak exemplifies
how morphological traits can represent an evolutionary com-
promise among functions, with downstream consequences
for behaviour and communication.
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