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Parental care is one of the most variable social behaviors and it is
an excellent model system to understand cooperation between
unrelated individuals. Three major hypotheses have been proposed to
explain the extent of parental cooperation: sexual selection, social
environment, and environmental harshness. Using the most compre-
hensive dataset on parental care that includes 659 bird species from
113 families covering both uniparental and biparental taxa, we show
that the degree of parental cooperation is associated with both sexual
selection and social environment. Consistent with recent theoretical
models parental cooperation decreases with the intensity of sexual
selection and with skewed adult sex ratios. These effects are additive
and robust to the influence of life-history variables. However, parental
cooperation is unrelated to environmental factors (measured at the
scale of whole species ranges) as indicated by a lack of consistent
relationship with ambient temperature, rainfall or their fluctuations
within and between years. These results highlight the significance of
social effects for parental cooperation and suggest that several
parental strategies may coexist in a given set of ambient environment.
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Parental cooperation, defined here as the extent of biparental
care, varies along a continuum from approximately equal share
by the male and female to obligate uniparental care, whereby one
parent (the male or the female) provides all care for the young (1, 2).
By cooperating with each other, the male and the female parent
increase growth and survival of their young in various insects, fishes,
amphibians, birds, and mammals (3-5). Thus, the extent of parental
cooperation may influence reproductive success and population dy-
namics. Parental care is an excellent model system for investigating
interactions between two unrelated individuals (6, 7), and it is one of
the prime examples of game-theoretic analyses of conflict and co-
operation both theoretically and empirically (8-11). Therefore, un-
derstanding the drivers of parental cooperation is one of the
lynchpins of breeding system evolution and cooperative behavior.
Sexual selection, social environment, and ambient environment
have been proposed to explain variation in the extent of co-
operation between parents (7, 12-14). First, cooperation between
parents should decrease with the intensity of sexual selection (10,
15, 16), and a reason for this reduction may be that sexual selection
favors the sex with higher variance in mating success to reduce his
(or her) care provisioning (17-19). Moreover, high mating effort
might further decrease the ability of the sex under stronger sexual
selection to contribute to parental care (20). Furthermore, high
rates of extrapair paternity should lead to the evolution of reduced
care provisioning by males (21-25). This evolutionary reduction of
paternal care in species with high extrapair paternity would trans-
late into reduced parental cooperation. Second, the sex that is in
short supply in the population has an increased mating opportunity
and is thus less likely to provide care than the more abundant sex
(26-28). Therefore, social environment (i.e., sex ratio of adults in
the population) is expected to influence parental behavior (8, 23,
29, 30). Third, environmental factors are known to influence
complex social behavior in vertebrates (31-33). More specifically,
demanding environmental conditions imposing higher costs of liv-
ing, such as low food supply or harsh and unpredictable climates,
should promote parental cooperation (34-36) and limit social
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conflict (37), and this idea has been recently backed by extensive
modeling (38, 39). Although previous tests of these hypotheses
provided important insights into the potential drivers of parental
cooperation, no study has yet tested all three hypotheses across a
broad range of taxa and assessed their relative importance.

Here, we use data on parental cooperation in 659 bird species
from 113 families to test these three major hypotheses. Birds are
one of the most suitable organisms to test these propositions,
because they exhibit the full range of parental cooperation from
biparental care to uniparental care, and detailed data are available on
parental behavior of a broad range of taxa from wild populations.
Because parental care is a complex trait, we compiled data on eight
components of care (40) and quantified parental cooperation based
on sex-specific contribution to care in these parental activities
spanning the whole parental care period (full materials and
methods are available in SI Appendix, Supplement SI). We focused
on care provisioning by the male and the female parent, and the
extent of parental cooperation was estimated on a scale that varied
between —1.5 when only one parent (the male or the female)
provides all care and 1.5 when the male and the female parent
share provisioning approximately equally (frequency distribution
of parental cooperation across 659 species of birds is available in
SI Appendix, Fig. S1).

Using phylogenetic analyses we test the following predictions:
(i) Sexual selection: parental cooperation is higher in socially mo-
nogamous species and in species with low rates of extrapair paternity
(EPP) than in polygamous and high EPP species. (i) Social envi-
ronment: species with balanced adult sex ratios (ASR, proportion of
males in the adult population) exhibit more parental cooperation
than species with biased ASR. (iii) Ambient environment: Species
that live in environments with harsh and variable climates exhibit
high parental cooperation.

Significance

Parents in many animal species care for their offspring. In some
species, males care more; in other species, females care more; in
still other species, the contribution of the sexes is equal. However,
we do not know what explains these differences among species.
Using the most comprehensive analyses of parental care to date,
here we show that parents cooperate more when sexual selection
is not intense and the adult sex ratio of males to females is not
strongly skewed. However, the degree of parental cooperation is
unrelated to harshness and predictability of the ambient envi-
ronment during the breeding season. Our work therefore sug-
gests that several types of parental care may coexist in a given set
of ambient environment.
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Results and Discussion

The extent of parental cooperation is usually conserved within
major clades (Fig. 1), which is consistent with high values of
phylogenetic signal (A ~ 0.9, Table 1; exact estimated A values are
available in SI Appendix, Table S1). At the same time, parental
cooperation is highly variable between clades across birds. For
example, grebes, woodpeckers, and sparrows are characterized
by extensive parental cooperation, whereas others exhibit low
cooperation (e.g., ducks, pheasants and grouse, and owls, Fig. 1).
Several clades, however, exhibit high interspecific variation in
parental cooperation; for example snipes, sandpipers and allies,
and Old World warblers (Fig. 1).
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Fig. 1.

Both sexual selection and social environment predict parental
cooperation as shown by phylogenetic generalized least squares
analyses (41) using the most recent complete avian phylogeny
(42) (Table 1 and Figs. 2 and 3; for details of these relationships
see SI Appendix, Table S1 and Fig. S2). First, intense sexual se-
lection as indicated by extensive sexual size dimorphism (43) and
high rates of extrapair paternity are consistently associated with
low parental cooperation (Figs. 2 and 3). To confirm that our
predictions also hold when testing the male involvement in care,
we also analyzed relative male care, which is a proxy of parental
care bias expressed on the scale from female-biased to male-
biased care (frequency distribution of relative male care across
659 species of birds is available in SI Appendix, Fig. S1). Our
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Phylogenetic distribution of parental cooperation in 659 species of birds included in this study (Bayesian maximum credibility tree of 500 phylog-

enies). The figure shows parental cooperation for each species (black bars refer to parental cooperation; tall bars indicate high cooperation) and phylogenetic
reconstruction along the branches (using plotBranchbyTrait {phytools} function of R software; red = high cooperation, yellow = low cooperation).
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Table 1. Parental cooperation in relation to sexual selection,
social environment, and climate in birds

Model and predictors Estimate (SE) F (P)

Sexual selection (R? = 0.17,
A = 0.76, df = 4,221)
Sexual size dimorphism
Extrapair paternity
Body mass
Chick development
Social environment (R? = 0.07,
A =0.91, df = 3,161)
Adult sex ratio

—0.258 (0.057)
—0.264 (0.061)

0.299 (0.115)
—-0.157 (0.151)

20.62 (<0.001)
18.55 (<0.001)
6.83 (0.011)
1.12 (0.308)

—0.186 (0.056) 11.05 (0.001)

Body mass 0.087 (0.135) 0.43 (0.524)

Chick development —0.084 (0.261) 0.12 (0.750)
Climate (R? = 0.01, A = 0.90,

df = 4,654)

Temperature 0.041 (0.033) 1.60 (0.214)

Rainfall 0.037 (0.031) 1.47 (0.233)

Body mass —0.019 (0.074) 0.09 (0.795)

Chick development —0.084 (0.145) 0.35 (0.564)
Full model (R* = 0.29, A = 0.82,

df = 7,72)

Sexual size dimorphism —0.168 (0.098) 2.93 (0.093)

Extrapair paternity —0.230 (0.106) 4.70 (0.034)

Adult sex ratio —0.234 (0.083) 7.88 (0.007)

Temperature 0.027 (0.105) 0.08 (0.796)

Rainfall 0.034 (0.087) 0.16 (0.696)

Body mass 0.334 (0.178) 3.54 (0.066)

Chick development 0.020 (0.223) 0.03 (0.900)

In all models, parental cooperation was the response variable and predictors
included: sexual size dimorphism (log absolute size dimorphism index),
extrapair paternity (sqrt EPP), adult sex ratio (sqrt ASR bias), temperature (first
axis from PCA on climatic variables: higher values mean hot environments with
low temperature variability; factor loadings available in S/ Appendix, Table S4),
rainfall (second axis from PCA on climatic variables: higher values mean dry
environments with high rainfall variability; factor loadings available in S/ Ap-
pendix, Table S4), body mass (log-transformed), and chick development (altricial
vs. precocial). We use phylogenetic generalized least squares approach and
present means from 500 analyses using different phylogenetic trees (see de-
tailed results in S/ Appendix, Table S1). Estimates are standardized regression
coefficients and A indicates the strength of the phylogenetic signal.

predictions are supported, because male care (relative to female
care) is low in species with male-biased sexual size dimorphism and
high in species with female-biased dimorphism. Moreover, males
provide little care in species with high extrapair paternity (Fig. 3;
summarized results are available in SI Appendix, Table S2, and
detailed results are available in SI Appendix, Table S3 and Fig. S3).

These results are in line with theories of the evolution of parental
cooperation (2, 17, 25, 44). Specifically, our results are consistent
with the prediction that the larger sex (usually the male in birds),
which is often under stronger sexual selection than the smaller sex,
reduces its care provisioning (17, 19), translating into lower con-
tribution to care on macroevolutionary time scales. Similarly, our
results support the prediction that high rates of extrapair paternity
will lead, on a macroevolutionary time scale, to a reduction in male
care (22-25) and consequently to reduced parental cooperation. At
the same time, this result is far from trivial, because some models
predict variable relationships between male care and extrapair pa-
ternity depending on model assumptions (45) and results of pre-
vious empirical studies are also conflicting (e.g., refs. 22 and 4648,
reviewed in ref. 25). It is worth stressing that the relationship we
document is the most comprehensive in any major taxon and makes
a significant contribution to previous theoretical and empirical in-
vestigations of extrapair paternity and parental care. The macro-
evolutionary response of male care to extrapair paternity may not
depend on the ability of males to perceive paternity loss in their
contemporary broods and respond to it by facultative reduction of
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paternal care (21, 22, 24, 46), although this ability seems to be
widespread among animals (25). Reduction of male parental con-
tribution due to female promiscuity might lead to lower overall
parental effort (49), and eventual breakdown of biparental breeding
systems (21).

Second, parental cooperation decreases with biased adult sex ra-
tios (Table 1 and Figs. 2 and 3). This result is in line with theoretical
prediction that biased sex ratios will promote divergent parental sex
roles, because individuals of the rare sex reduce their care due to
high mating success, whereas members of the more common sex get
most reproductive success from caring for existing offspring (8, 23).
This interpretation is supported by modeling of relative male care,
which is low in species with female-biased sex ratio and high in
species with male-biased sex ratio (Fig. 3; summarized results are
available in SI Appendix, Table S2, and detailed results are available
in SI Appendix, Table S3 and Fig. S3). Our results are also in line
with previous findings in shorebirds, where ASR strongly predicted
conventional and reversed parental sex roles (27). However, the
directionality of the relationship between ASR and cooperation is
unclear and the causality might be reversed. Unequal parental roles
might lead to biased sex ratios because the sexes engage unequally in
parental duties, have different time budgets, and consequently ex-
perience different mortality rates (50). Accordingly, sex-biased mor-
tality rates are often correlated with biased ASR across populations
and species (51-53). Moreover, some authors suggest positive feed-
backs between changes in ASR and parental sex roles and thus the
relationship may even be bidirectional (8, 23, 54).

The aforementioned results are not confounded by phylogeny
because we use phylogeny-based comparative analyses, and remain
robust to alternative phylogenetic hypotheses and incorporating
potential confounds in the models (for phylogenetic robustness of
our results, see ST Appendix, Tables S1 and S3). In addition to sexual
selection and social environment, we find a positive relationship of
parental cooperation to adult body mass, although this effect is less
consistent between analyses (Table 1 and Fig. 3). Body mass is a
typical allometric correlate of life history, including breeding cycle
duration (for the relationship of breeding cycle duration to adult
body mass in our dataset see SI Appendix, Fig. S4) and adult
mortality rate (correlation in our dataset r = —0.57, n = 323 species),
and of pair bond duration and divorce rate (55, 56). Consequently,
it seems that long-lived species with prolonged pair bonds and low
divorce rates would be expected to cooperate more, but more direct
tests of this hypothesis are needed. We find that chick development
(altricial vs. precocial) is not associated with the extent of co-
operation or relative male care (Table 1 and Fig. 3), suggesting that
chick demand does not affect parental cooperation strategies across
birds. We highlight that sexual selection and social environment to-
gether with body mass explain a large proportion of variance in pa-
rental cooperation (~30-35%; summary in Table 1 and details in S7
Appendix, Table S1), although these values are somewhat lower for
relative male care (~12-26%; summary in SI Appendix, Table S2 and
details in SI Appendix, Table S3). We also emphasize that recent
work suggests that ASR relates to sexual selection (57) and the
precise relationship between ASR, demographic processes, and sex-
ual selection are far from understood (53). Nevertheless, our results
demonstrate large additive effects of major selective forces that were
theoretically predicted to facilitate parental cooperation in animals.

Finally, climatic conditions during the breeding season, thought to
drive the evolution of cooperation (33, 34, 58), do not predict pa-
rental cooperation as none of the climatic factors is significantly
associated with parental cooperation either in bivariate or multiple
regression analyses (Table 1 and Fig. 3; for details of these rela-
tionships, see ST Appendix, Table S1 and Fig. S2). Our analyses thus
suggest that climatic conditions prevailing during the breeding sea-
son are quite permissive in terms of cooccurring multiple parental
cooperation strategies. This conclusion agrees with observations that
species with extremely contrasting parental care systems (e.g., with
reversed vs. conventional sex roles) may breed side-by-side sharing
much of the environment (see ref. 27 for examples). Weak or in-
consistent effects of climate have previously been identified in large-
scale analyses of climatic correlates of cooperative breeding and
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Fig. 2. Parental cooperation in relation to sexual size dimorphism (log abso-
lute Size Dimorphism Index), extrapair paternity (sqrt EPP), and adult sex ratio
(sqrt ASR bias) in birds. Variables in each panel were statistically adjusted for
other predictors in a phylogenetic generalized least squares (PGLS) model and
the residuals from statistical models are plotted (sexual selection model for
sexual size dimorphism and extrapair paternity, and social environment model
for ASR, see Table 1). Ordinary least squares regression lines are included.

sexual size dimorphism in birds (34, 58-60). Taken together with our
results presented here, this body of work suggests that sexual, social,
and parenting strategies in birds are largely independent of climatic
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effects on the scale of whole breeding ranges of species and instead
might be driven by eco-evolutionary feedbacks between social be-
havior, life history, and demography (29, 61). It is also possible that
parental cooperation may covary with environmental factors at finer
spatial scales not captured by our analyses of breeding range-wide
environment, for example as seems to be the case of mating systems
and sexual selection (31, 32, 35, 60). We suggest that detailed
analyses of the plasticity of parental cooperation within species in
relation to environmental conditions on smaller spatial scales (e.g.,
food supply, ambient temperature) will shed critical light on this
important question.

In conclusion, we show that the evolution of parental cooperation
is predicted by sexual selection and social environment at least in
birds, whereas climatic conditions at the scale of the whole species’
breeding ranges do not predict parental cooperation. Thus, several
parental cooperation strategies may be adaptive in a given set of
climatic conditions, depending on the species’ social and genetic
mating systems and demographic structure. These patterns are valid
across a broad range of bird species and clades that breed in diverse
settings. They highlight the significance of feedbacks between sexual
selection, social environment, and parental care, because all of
these have mortality consequences and are thus linked in ecoevo-
lutionary feedback loops (61).

Further works are needed to advance parental cooperation re-
search. First, drivers of the effects we identify are sometimes unclear.
For example, it is not clear whether evolutionary changes in parental
cooperation are driven by sexual selection acting on male behavior
(24, 46), on female behavior (62), or on both sexes simultaneously.
Second, further studies should explore which sex is more responsive
and whether sex-specific parenting abilities can bias responses to
intense sexual selection (10, 11). Third, new phylogenetic compara-
tive analyses are needed to test whether sexual selection and social
environment may influence parental cooperation in nonavian taxa,
for instance in fishes, frogs, and mammals. Although the details of
care differ between these major clades, our results here establish the
working hypotheses that can be followed up in a diverse range of
taxa. Fourth, environmental factors other than climate can have
important effects on parental cooperation. For example, food
availability predicts cooperation during nestling feeding in several
avian groups (35, 36), and the generality of this relationship should
be tested using large-scale data sets. Moreover, our range-wide
analyses might have missed the importance of ecological factors
operating on smaller spatial scales. We encourage researchers to
evaluate potential effects of small-scale ecological factors on pa-
rental cooperation. Finally, insights gained by our comparative study
should be further tested in the natural habitat of animals. These
field-based observations and experimental manipulations combined
with comparisons across populations and long-term population
monitoring data will be immensely useful to tease apart various
social and ecological effects and allow evolutionary ecologists to test
the positive and negative feedbacks that underpin mating systems
and parental care.

Materials and Methods

Data Collection. We quantified sex-specific contribution to care on an ordinal
scale from 0 to 4 as follows: 0, no male contribution; 1, male contribution
1-33%; 2, male contribution 34-66%; 3, male contribution 67-99%; 4, male
contribution 100%. Thus, this score varied from female-only care (0) to ap-
proximately equal care by male and female (2) to male-only care (4). Scores
were gathered separately for nest building, incubation, nest guarding (i.e.,
guarding and defending the nest during incubation), chick brooding, chick
feeding, chick guarding (i.e., guarding and defending the brood after
hatching), postfledging feeding of chicks, and postfledging guarding of
chicks (i.e., guarding and defending the brood after fledging, for details see
ref. 40). To represent the extent of biparental care, the eight parental activities
were recoded on a 3-level scale so that 0 represented exclusive uniparental care
by the male or female (original scores 0 or 4), 1 represented biparental care
biased toward either the male or the female (original scores 1 or 3), and 2
represented approximately equal contribution by the male and female (original
score 2). Finally, we calculated parental cooperation by averaging the statistically
centered extent of biparental care across the eight activities. The resulting pa-
rental cooperation ranged from minimum parental cooperation to maximum
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parental cooperation (frequency distribution of parental cooperation across 659
species of birds is available in S/ Appendix, Fig. S1) and varied across the phy-
logeny (Fig. 1). Here, minimum cooperation is when all activities are carried out
by one sex (the male or the female, approximately around the value of —1.5),
whereas the maximum cooperation is when all parental care activities are shared
approximately equally between the male and the female (approximately around
the value of 1.5). To test hypotheses that predict specific direction of effects on
the scale from female-biased to male-biased care, we also calculated standard-
ized relative male care based on the original scores. Relative male care ranged
from -2 (strongly female-biased care) to 3 (strongly male-biased care; frequency
distribution of relative male care across 659 species of birds is available in S/
Appendix, Fig. S1). Data collection was designed to cover the broad phylogenetic
diversity and full variability of breeding systems exhibited by birds. Our data set
contained 659 species from 113 avian families.

We used two proxies of sexual selection that are widely available: sexual
size dimorphism and extrapair paternity (63). We note that the relationship
between the strength of sexual selection and EPP is complex. However, by
using several indices of sexual selection (sexual size dimorphism, EPP) we
hope to provide comprehensive analyses and characterize broad range of
processes that underpin sexual selection, including male-male competition
and female choice. We calculated size dimorphism index as SDI = body mass
of the heavier sex divided by body mass of the lighter sex minus one and
made the values positive for male-biased dimorphism and negative for fe-
male-biased dimorphism. We then also calculated absolute SDI by taking
absolute values of the original SDI. Greater values of absolute SDI thus mean
greater difference in body masses between sexes, suggesting differential
selection acting on males and females that may indicate sexual selection (15,
43). Extrapair paternity (EPP) was expressed as % of broods containing at
least one extrapair offspring, in accordance with recent studies (64). How-
ever, to check the sensitivity of our analyses to this particular choice, we also
repeated all analyses with % of extrapair offspring in the population (EPY).
Although this variable strongly decreased sample size, results were largely
robust to the choice of EPP vs. EPY (details of these sensitivity analyses are
available in S/ Appendix, Tables S1 and S3). Social environment was char-
acterized by adult sex ratio (ASR), which was expressed as the proportion of
males in the adult population (52, 65). We then calculated the absolute
deviation from ASR of 0.5 to express the degree of bias in the frequency of
males vs. females in the population. This value was always positive and in-
creased with increasing deviation from ASR of 0.5 (ASR bias).

To characterize ambient environment, first we recorded breeding season for
each species from literature. Second, based on digitized ranges (66) and global
climatic layers (CRU Dataset, www.cru.uea.ac.uk), we extracted climatic
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conditions in the breeding range of every species during its breeding season.
We extracted (i) the average monthly temperature (°C) and rainfall (mm);
(i) within-year variation as SD of breeding season monthly averages for
temperature and rainfall; and (iii) among-year variation as SD across 49 y
(1961-2009) of monthly averages for temperature and rainfall during the
species’ breeding season. To control for potential life-history confounds, we
included adult body mass (g) and chick development (altricial vs. precocial) in
the models.

Phylogenetic Analyses. \We used phylogenetic generalized least squares (PGLS)
approach implemented in a fast likelihood algorithm (67) in the R language
(68). In PGLS models, we estimated the phylogenetic signal by optimizing
the A parameter (41). We used 500 phylogenetic trees extracted from www.
birdtree.org (Hackett constraint, ref. 42). We ran the PGLS analyses across all
of the trees and then summarized the resulting 500 parameter estimates.

Parental cooperation and relative male care were the main response
variables in our models. First, we fitted bivariate PGLS models between
parental cooperation and the following predictors: sexual size dimorphism
(log absolute SDI), extrapair paternity (sqrt EPP), adult sex ratio (sqrt ASR
bias), climatic variables (means and among- and within-year variations in
temperature and rainfall), adult body mass (log-transformed), and chick
development (altricial vs. precocial). Predictors were the same for relative
male care, except that we used SDI instead of absolute SDI, ASR instead of ASR
bias, and we did not use climatic variables due to lacking predictions for
relative male care. Second, we fitted PGLS models with several explanatory
variables. To use the maximum number of species in each analysis, we fitted
four models structured according to our three main hypotheses while con-
trolling for life-history variables. For parental cooperation, these were: Sexual
selection model: absolute SDI, EPP, adult body mass, chick development (n =
226 species); Social environment model: ASR bias, adult body mass, chick
development (n = 165 species); Climate model: ambient temperature, rain-
fall, adult body mass, chick development (n = 659 species); Full model: ab-
solute SDI, EPP, ASR bias, ambient temperature, rainfall, adult body mass,
chick development (n = 80 species). For relative male care, these were:
Sexual selection model: SDI, EPP, adult body mass, chick development (n =
226 species); Social environment model: ASR, adult body mass, chick devel-
opment (n = 165 species); Full model: SDI, EPP, ASR, adult body mass, chick
development (n = 80 species). We did not fit the climatic model due to
lacking predictions for relative male care. Full details of materials and
methods are available in S/ Appendix, Supplement S1.
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